Abstract
Steady-state demand-driven water distribution system (WDS) solution is the bedrock for much research conducted in the field related to WDSs. WDSs are modeled using the Darcy–Weisbach equation with the Swamee–Jain equation. However, the Swamee–Jain equation approximates the Colebrook–White equation, errors of which are within 1% for ϵ/D∈[10−6,10−2] and Re∈[5000,108]. A formulation is presented for the solution of WDSs using the Colebrook–White equation. The correctness and efficacy of the head formulation have been demonstrated by applying it to six WDSs with the number of pipes ranges from 454 to 157,044 and the number of nodes ranges from 443 to 150,630. The addition of a physically and fundamentally more accurate WDS solution method can improve the quality of the results achieved in both academic research and industrial application, such as contamination source identification, water hammer analysis, WDS network calibration, sensor placement, and least-cost design and operation of WDSs.
Subject
Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献