Hybrid Models for Solving the Colebrook–White Equation Using Artificial Neural Networks

Author:

Cahyono MuhammadORCID

Abstract

This study proposes hybrid models to solve the Colebrook–White equation by combining explicit equations available in the literature to solve the Colebrook–White equation with an error function. The hybrid model is in the form of fH=fo−eA. fH  is the friction factor value f predicted by the hybrid model, fo is the value of f calculated using several explicit formulas for the Colebrook–White equation, and eA is the error function determined using the neural network procedures. The hybrid equation consists of a series of hyperbolic tangent functions whose number corresponds to the number of neurons in the hidden layer. The simulation results showed that the hybrid models using five hyperbolic tangent functions could produce reasonable predictions of friction factors, with the maximum absolute relative error (MAXRE) around one tenth, or ten times lower than that produced by the corresponding existing formula. The simplified hybrid models are also given using four and three tangent hyperbolic functions. These simplified models still provide accurate results with MAXRE of less than 0.1%.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Mechanical Engineering,Condensed Matter Physics

Reference33 articles.

1. Flow in Open Channels;Subramanya,2009

2. Ópen Channel Hydraulics;Osman,2006

3. Practical Channel Hydraulics Roughness, Conveyance and Afflux;Knight,2018

4. Fluid Mechanics;White,2011

5. Fluid Mechanics Fundamentals and Applications;Çengel,2014

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Evaluation of Darcy–Weisbach Friction Factors of Fiberglass Pipes Based on Internal Surface Roughness Measurement;Iranian Journal of Science and Technology, Transactions of Civil Engineering;2023-05-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3