Abstract
Grasping point detection has traditionally been a core robotic and computer vision problem. In recent years, deep learning based methods have been widely used to predict grasping points, and have shown strong generalization capabilities under uncertainty. Particularly, approaches that aim at predicting object affordances without relying on the object identity, have obtained promising results in random bin-picking applications. However, most of them rely on RGB/RGB-D images, and it is not clear up to what extent 3D spatial information is used. Graph Convolutional Networks (GCNs) have been successfully used for object classification and scene segmentation in point clouds, and also to predict grasping points in simple laboratory experimentation. In the present proposal, we adapted the Deep Graph Convolutional Network model with the intuition that learning from n-dimensional point clouds would lead to a performance boost to predict object affordances. To the best of our knowledge, this is the first time that GCNs are applied to predict affordances for suction and gripper end effectors in an industrial bin-picking environment. Additionally, we designed a bin-picking oriented data preprocessing pipeline which contributes to ease the learning process and to create a flexible solution for any bin-picking application. To train our models, we created a highly accurate RGB-D/3D dataset which is openly available on demand. Finally, we benchmarked our method against a 2D Fully Convolutional Network based method, improving the top-1 precision score by 1.8% and 1.7% for suction and gripper respectively.
Funder
Horizon 2020 Framework Programme
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Reference66 articles.
1. RSAII: Flexible Robotized Unitary Picking in Collaborative Environments for Order Preparation in Distribution Centers;Susperregi,2020
2. Imitation and Reinforcement Learning
3. Deep learning applications and challenges in big data analytics
Cited by
25 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献