Quantifying Mg2+ Binding to ssDNA Oligomers: A Self-Consistent Field Theory Study at Varying Ionic Strengths and Grafting Densities

Author:

Jahan Merina,Uline MarkORCID

Abstract

The performance of aptamer-based biosensors is crucially impacted by their interactions with physiological metal ions, which can alter their structures and chemical properties. Therefore, elucidating the nature of these interactions carries the utmost importance in the robust design of highly efficient biosensors. We investigated Mg 2 + binding to varying sequences of polymers to capture the effects of ionic strength and grafting density on ion binding and molecular reorganization of the polymer layer. The polymers are modeled as ssDNA aptamers using a self-consistent field theory, which accounts for non-covalent ion binding by integrating experimentally-derived binding constants. Our model captures the typical polyelectrolyte behavior of chain collapse with increased ionic strength for the ssDNA chains at low grafting density and exhibits the well-known re-entrant phenomena of stretched chains with increased ionic strength at high grafting density. The binding results suggest that electrostatic attraction between the monomers and Mg 2 + plays the dominant role in defining the ion cloud around the ssDNA chains and generates a nearly-uniform ion distribution along the chains containing varying monomer sequences. These findings are in qualitative agreement with recent experimental results for Mg 2 + binding to surface-bound ssDNA.

Funder

National Science Foundation

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3