Bimetallic Gold-Silver Nanoparticles Supported on Zeolitic Imidazolate Framework-8 as Highly Active Heterogenous Catalysts for Selective Oxidation of Benzyl Alcohol into Benzaldehyde

Author:

Liu Lili,Zhou Xiaojing,Yan Yongmei,Zhou Jie,Zhang Wenping,Tai XishiORCID

Abstract

The metal-organic zeolite imidazolate framework-8 (ZIF-8) supported gold-silver bimetallic catalysts with a core-shell structure (Au@Ag/ZIF-8 and Ag@Au/ZIF-8) and cluster structure (AuAg/ZIF-8) were successfully prepared by the deposition-redispersion method. Energy dispersive X-ray spectroscopy (EDS) elemental mapping images displayed that in the Au@Ag/ZIF-8 catalyst, Ag atoms were deposited on an exposed Au surface, and core-shell structured Au@Ag particles with highly dispersed Ag as the shell were formed. Additionally, the XPS investigation at gold 4f levels and silver 3d levels indicated that the Au and Ag particles of Au@Ag/ZIF-8, Ag@Au/ZIF-8, and AuAg/ZIF-8 were in a zero valence state. Among the resultant catalysts obtained in this study, Ag@Au/ZIF-8 catalysts showed the highest catalytic activity for the selective oxidation of benzyl alcohol, followed by AuAg/ZIF-8 and Au@Ag/ZIF-8. The turnover frequency (TOF) values were in the order of Ag@Au/ZIF-8 (28.2 h−1) > AuAg/ZIF-8 (25.0 h−1) > Au@Ag/ZIF-8 (20.0 h−1) at 130 °C within 1 h under 8 bar O2 when using THF as solvent. The catalysts of Au@Ag/ZIF-8 and Ag@Au/ZIF-8 with core–shell structures have higher benzaldehyde selectivities (53.0% and 53.3%) than the AuAg/ZIF-8 catalyst (35.2%) in the selective oxidation of benzyl alcohol into benzaldehyde. The effect of the solvent, reaction temperature, reaction time, and reaction pressure on benzyl alcohol conversion and benzaldehyde selectivity in benzyl alcohol selective oxidation over Au@Ag/ZIF-8, Ag@Au/ZIF-8, and AuAg/ZIF-8 were also investigated. All of the catalysts showed excellent performance at 130 °C under 8 bar O2 within 1 h when using THF as the solvent in the selective oxidation of benzyl alcohol to benzaldehyde. Moreover, the catalysts can be easily recycled and used repetitively at least four times.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Shandong province

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3