Automatic Identification for the Boundaries of InSAR Anomalous Deformation Areas Based on Semantic Segmentation Model

Author:

Liang Yiwen1,Zhang Yi2,Li Yuanxi2,Xiong Jiaqi1

Affiliation:

1. Aerial Photogrammetry and Remote Sensing Bureau of China Administration of Coal Geology, Xi’an 710199, China

2. Technology & Innovation Centre for Environmental Geology and Geohazards Prevention, School of Earth Sciences, Lanzhou University, Lanzhou 730000, China

Abstract

Interferometric synthetic aperture radar (InSAR) technology has become one of the mainstream techniques for active landslide identification over a large area. However, the method for interpreting anomalous deformation areas derived from InSAR data is still mainly manual delineation through human–computer interaction. This study focuses on using a deep learning semantic segmentation model to identify the boundaries of anomalous deformation areas automatically. We experimented with the delineation results based on an InSAR deformation map, hot spot map, and different combinations of topographic datasets to build the optimal model. The result indicates that the hot spot map, aspect, and Google Earth image as input features based on the U-Net model can achieve the best performance, with the precision, recall, F1 score, and intersection over union (IoU) being 0.822, 0.835, 0.823, and 0.705, respectively. Our method promotes the development of identifying active landslides using InSAR technology automatically and rapidly at a regional scale. Moreover, applying a new method for automatically and rapidly identifying potential landslides in susceptible areas is necessary for landslide hazard mitigation and risk management.

Funder

Important Talent Project of Gansu Province

Fundamental Research Funds for the Central Universities

National Natural Science Foundation of China

Science and Technology Project of Gansu Province

Research on 3D Geological Modeling and Application Technology for Urban Geological Survey

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference103 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3