Estimation of Soil Salt Content at Different Depths Using UAV Multi-Spectral Remote Sensing Combined with Machine Learning Algorithms

Author:

Cui Jiawei123,Chen Xiangwei24,Han Wenting25,Cui Xin25ORCID,Ma Weitong12,Li Guang25ORCID

Affiliation:

1. College of Water Resources and Architectural Engineering, Northwest A&F University, Yangling 712100, China

2. Institute of Water-Saving Agriculture in Arid Regions of China, Northwest A&F University, Yangling 712100, China

3. Tianjin Water Planning Survey and Design Company Limited, Tianjin 300204, China

4. College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China

5. College of Mechanical and Electronic Engineering, Northwest A&F University, Yangling 712100, China

Abstract

Soil salinization seriously affects the sustainable development of agricultural production; thus, the timely, efficient, and accurate estimation of soil salt content (SSC) has important research significance. In this study, the feasibility of soil salt content retrieval using machine learning models was explored based on a UAV (unmanned aerial vehicle) multi-spectral remote sensing platform. First, two variable screening methods (Pearson correlation analysis and Grey relational analysis) are used to screen the characteristic importance of 20 commonly used spectral indices. Then, the sensitive spectral variables were divided into a vegetation index group, a salt index group, and a combination variable group, which represent the model. To estimate SSC information for soil depths of 0–20 cm and 20–40 cm, three machine learning regression models were constructed: Support Vector Machine (SVM), Random Forest (RF), and Backpropagation Neural Network (BPNN). Finally, the salt distribution map for a 0–20 cm soil depth was drawn based on the best estimation model. The results of experiments show that GRA is better than PCA in improving the accuracy of the estimation model, and the combination variable group containing soil moisture information performs best. The three machine learning models have achieved good prediction effects to some extent. The accuracy and stability of the model are considered comprehensively, the prediction effect of 0–20 cm is higher than that of 20–40 cm, and the validation set coefficient of determination (R2), Root-Mean-Square-Error (RMSE), and Mean Absolute Error (MAE) of the best inversion model are 0.775, 0.055, and 0.038, and the soil salt spatial map based on the optimal estimation model can reflect the salinization distribution in the study area. Therefore, this study shows that a UAV multi-spectral remote sensing platform combined with machine learning models can better monitor farmland soil salt content.

Funder

National Natura Science Foundation of China

Key Research and Development Project of Shaanxi Province

Natural Science Basic Research Program of Shaanxi Province

Key Research and Development Project of Jiangsu Province

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3