A Comparative Study of Different Dimensionality Reduction Algorithms for Hyperspectral Prediction of Salt Information in Saline–Alkali Soils of Songnen Plain, China

Author:

Li Kai1,Zhou Haoyun1,Ren Jianhua1,Liu Xiaozhen1,Zhang Zhuopeng1

Affiliation:

1. College of Geographical Science, Harbin Normal University, Harbin 150025, China

Abstract

Hyperspectral technology is widely recognized as an effective method for monitoring soil salinity. However, the traditional sieved samples often cannot reflect the true condition of the soil surface. In particular, there is a lack of research on the spectral response of cracked salt-affected soils despite the common occurrence of cohesive saline soil shrinkage and cracking during water evaporation. To address this research, a laboratory was designed to simulate the desiccation cracking progress of 57 soda saline–alkali soil samples with different salinity levels in the Songnen Plain of China. After completion of the drying process, spectroscopic analysis was conducted on the surface of all the cracked soil samples. Moreover, this study aimed to evaluate the predictive ability of multiple linear regression models (MLR) for four main salt parameters. The hyperspectral reflectance data was analyzed using three different band screening methods, namely random forest (RF), principal component analysis (PCA), and Pearson correlation analysis (R). The findings revealed a significant correlation between desiccation cracking and soil salinity, suggesting that salinity is the primary factor influencing surface cracking of saline–alkali soil in the Songnen Plain. The results of the modeling analysis also indicated that, regardless of the spectral dimensionality reduction method employed, salinity exhibited the highest prediction accuracy for soil salinity, followed by electrical conductivity (EC) and sodium (Na+), while the pH model exhibited the weakest predictive performance. In addition, the usage of RF for band selection has the best effect compared with PCA and Pearson methods, which allows salt information of soda saline–alkali soils in Songnen Plain to be predicted precisely.

Funder

Fundamental Research Funds for the Central Universities of China

Strategic Priority Research Program of the Chinese Academy of Sciences

New Era Longjiang Excellent Master and Doctoral dissertation project funding

Natural Science Foundation of Heilongjiang Province of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3