An Adaptive Tracking-Extended Kalman Filter for SOC Estimation of Batteries with Model Uncertainty and Sensor Error

Author:

Ma Deng,Gao Kai,Mu Yutao,Wei Ziqi,Du Ronghua

Abstract

Accurate state of charge (SOC) plays a vital role in battery management systems (BMSs). Among several developed SOC estimation methods, the extended Kalman filter (EKF) has been extensively applied. However, EKF cannot achieve valid estimation when the model accuracy is inadequate, the noise covariance matrix is uncertain, and the sensor has large errors. This paper makes two contributions to overcome these drawbacks: (1) A variable forgetting factor recursive least squares (VFFRLS) is proposed to accomplish parameters identification. This method updates the forgetting factor according to the innovation sequence, which accuracy is superior to the forgetting factor recursive least squares (FFRLS); (2) an adaptive tracking EKF (ATEKF) is proposed to estimate the SOC of the battery. In ATEKF, the error covariance matrix is adaptively corrected according to the innovation sequence and correction factor. The value of the correction factor is related to the actual error. Proposed algorithms are validated with a publicly available dataset from the University of Maryland. The experimental results indicate that the identification error of VFFRLS can be reduced from 0.05% to 0.018%. Additionally, ATEKF has better accuracy and robustness than EKF when having large sensor errors and uncertainty of the error covariance matrix, in which case it can reduce SOC estimation error from 1.09% to 0.15%.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3