Abstract
The RUNX1-RUNX1T1 fusion is a frequent chromosomal alteration in acute myeloid leukemias (AMLs). Although RUNX1-RUNX1T1 fusion protein has pivotal roles in the development of AMLs with the fusion, RUNX1-RUNX1T1, fusion protein is difficult to target, as it lacks kinase activities. Here, we used bioinformatic tools to elucidate targetable signaling pathways in AMLs with RUNX1-RUNX1T1 fusion. After analysis of 93 AML cases from The Cancer Genome Atlas (TCGA) database, we found expression of 293 genes that correlated to the expression of the RUNX1-RUNX1T1 fusion gene. Based on these 293 genes, the cyclooxygenase (COX), vascular endothelial growth factor receptor (VEGFR), platelet-derived growth factor receptor (PDGFR), and fibroblast growth factor receptor (FGFR) pathways were predicted to be specifically activated in AMLs with RUNX1-RUNX1T1 fusion. Moreover, the in vitro proliferation of AML cells with RUNX1-RUNX1T1 fusion decreased significantly more than that of AML cells without the fusion, when the pathways were inhibited pharmacologically. The results indicate that novel targetable signaling pathways could be identified by the analysis of the gene expression features of AMLs with non-targetable genetic alterations. The elucidation of specific molecular targets for AMLs that have a specific genetic alteration would promote personalized treatment of AMLs and improve clinical outcomes.
Funder
National Research Foundation of Korea
Subject
Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献