Development of an Urban Heat Mitigation Plan for the Greater Sacramento Valley, California, a Csa Koppen Climate Type

Author:

Taha Haider

Abstract

An urban atmospheric modeling study was undertaken with the goal of informing the development of a heat-mitigation plan for the greater Sacramento Valley, California. Realistic levels of mitigation measures were characterized and ranked in terms of their effectiveness in producing urban cooling under current conditions and future climate and land use. An urban heat-island index was computed for current and future climates based on each location’s time-varying upwind temperature reference points and its hourly temperatures per coincident wind direction. For instance, the UHII for the period 16–31 July 2015, for all-hours averaged temperature equivalent (i.e., °C · h hr−1), ranged from 1.5 to 4.7 °C across the urban areas in the region. The changes in local microclimates corresponding to future conditions were then quantified by applying a modified high-resolution urban meteorology model in dynamically downscaling a climate model along with future urbanization and land use change projections for each area. It was found that the effects of urbanization were of the same magnitude as that of the local climate change. Considering the urban areas in the region and the selected emissions scenarios, the all-hours temperature equivalent of the UHII (°C · h hr−1) increased by between 0.24 and 0.80 °C, representing an increase of between 17% and 13% of their respective values in the current climate. Locally, instantaneous (e.g., hourly) temperatures could increase by up to ~3 °C because of climate effects and up to ~5 °C because of both climate and urbanization changes. The efficacies of urban heat mitigation measures were ranked both at the county level and at local project scales. It was found that urban cooling measures could help decrease or offset exceedances in the National Weather Service heat index (NWS HI) above several warning thresholds and reduce the number of heatwave or excessive heat event days. For example, measures that combine increased albedo and urban forests can reduce the exceedances above NWS HI Danger level by between 50% and 100% and the exceedances above Extreme Caution level by between 18% and 36%. UHII offsets from each mitigation measure were quantified for two situations: (1) a scenario where a community implements cooling measures and no other nearby communities take any action and (2) a scenario where both the community and its upwind neighbors implement cooling measures. In this second situation, the community benefits from cooler air transported from upwind areas in addition to the local cooling resulting from implementation of its own heat mitigation strategies. The modeling of future climates showed that except for a number of instances, the ranking of measures in each respective urban area remains unchanged into the future.

Funder

Caltrans / SMAQMD

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3