Method for Identifying the Traffic Congestion Situation of the Main Road in Cold-Climate Cities Based on the Clustering Analysis Algorithm

Author:

Pei Yulong,Cai XiaoxiORCID,Li Jie,Song Keke,Liu Rui

Abstract

Congestion has become a common urban disease in countries worldwide, with the acceleration of urbanization. The connotation of the congestion situation is expanded to describe, in detail, the traffic operation status and change characteristics of the main road in cold-climate cities and to provide more comprehensive identification methods and theoretical basis for cold-climate cities. It includes two aspects: the state and trend. A method to distinguish the traffic congestion state level and trend type of the main road in cold-climate cities is proposed on the basis of density clustering, hierarchical clustering, and fuzzy C-means clustering, and the temporal and spatial congestion characteristics of the main roads of cold-climate cities are explored. Research results show that we can divide the traffic congestion state into three levels: unblocked, slow, and congested. We can also divide the congestion trend into three types: aggravation, relief, and stability. This method is suitable for the identification of the main road’s congestion situation in cold-climate cities and can satisfy the spatiotemporal self-correlation and difference test. The temporal and spatial distribution rules of congestion are different under different road conditions, the volatility of the congestion degree and change speed on snowy and icy pavements, and the instability of congestion spatial aggregation are more serious than that on non-snowy and non-icy pavements. The research results are more comprehensive and objective than the existing methods.

Funder

Fundamental Research Funds for the Central Universities

National Key Research and Development Program of China

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

Reference81 articles.

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3