Method for the Identification and Classification of Zones with Vehicular Congestion

Author:

Reyes Gary12ORCID,Tolozano-Benites Roberto1ORCID,Lanzarini Laura3ORCID,Estrebou César3ORCID,Bariviera Aurelio F.4ORCID,Barzola-Monteses Julio12ORCID

Affiliation:

1. Carrera de Sistemas Inteligentes, Universidad Bolivariana del Ecuador, Campus Durán Km 5.5 vía Durán Yaguachi, Durán 092405, Ecuador

2. Facultad de Ciencias Matemáticas y Físicas, Universidad de Guayaquil, Cdla. Universitaria Salvador Allende, Guayaquil 090514, Ecuador

3. Instituto de Investigación en Informática LIDI (Centro CICPBA), Facultad de Informática, Universidad Nacional de La Plata, Buenos Aires CP 1900, Argentina

4. Department of Business & ECO-SOS, Universitat Rovira i Virgili, Av. Universitat 1, 43204 Reus, Spain

Abstract

Persistently, urban regions grapple with the ongoing challenge of vehicular traffic, a predicament fueled by the incessant expansion of the population and the rise in the number of vehicles on the roads. The recurring challenge of vehicular congestion casts a negative influence on urban mobility, thereby diminishing the overall quality of life of residents. It is hypothesized that a dynamic clustering method of vehicle trajectory data can provide an accurate and up-to-date representation of real-time traffic behavior. To evaluate this hypothesis, data were collected from three different cities: San Francisco, Rome, and Guayaquil. A dynamic clustering algorithm was applied to identify traffic congestion patterns, and an indicator was applied to identify and evaluate the congestion conditions of the areas. The findings indicate a heightened level of precision and recall in congestion classification when contrasted with an approach relying on static cells.

Publisher

MDPI AG

Reference38 articles.

1. Soumia Goumiri, S.Y., and Djahel, S. (2023). Smart Mobility in Smart Cities: Emerging Challenges, Recent Advances and Future Directions. J. Intell. Transp. Syst., 1–37.

2. Data Clustering: 50 Years beyond K-Means;Jain;Pattern Recognit. Lett.,2010

3. Tork, H.F. (2012, January 26–27). Spatio-temporal clustering methods classification. Proceedings of the Doctoral Symposium on Informatics Engineering, Porto, Portugal.

4. Trajectory data mining: A review of methods and applications;Mazimpaka;J. Spat. Inf. Sci.,2016

5. Deng, Z., You, X., Shi, Z., Gao, H., Hu, X., Yu, Z., and Yuan, L. (2022). Identification of Urban Functional Zones Based on the Spatial Specificity of Online Car-Hailing Traffic Cycle. ISPRS Int. J. Geo-Inf., 11.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3