A Light-Weight Practical Framework for Feces Detection and Trait Recognition

Author:

Leng LuORCID,Yang Ziyuan,Kim Cheonshik,Zhang Yue

Abstract

Fecal trait examinations are critical in the clinical diagnosis of digestive diseases, and they can effectively reveal various aspects regarding the health of the digestive system. An automatic feces detection and trait recognition system based on a visual sensor could greatly alleviate the burden on medical inspectors and overcome many sanitation problems, such as infections. Unfortunately, the lack of digital medical images acquired with camera sensors due to patient privacy has obstructed the development of fecal examinations. In general, the computing power of an automatic fecal diagnosis machine or a mobile computer-aided diagnosis device is not always enough to run a deep network. Thus, a light-weight practical framework is proposed, which consists of three stages: illumination normalization, feces detection, and trait recognition. Illumination normalization effectively suppresses the illumination variances that degrade the recognition accuracy. Neither the shape nor the location is fixed, so shape-based and location-based object detection methods do not work well in this task. Meanwhile, this leads to a difficulty in labeling the images for training convolutional neural networks (CNN) in detection. Our segmentation scheme is free from training and labeling. The feces object is accurately detected with a well-designed threshold-based segmentation scheme on the selected color component to reduce the background disturbance. Finally, the preprocessed images are categorized into five classes with a light-weight shallow CNN, which is suitable for feces trait examinations in real hospital environments. The experiment results from our collected dataset demonstrate that our framework yields a satisfactory accuracy of 98.4%, while requiring low computational complexity and storage.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3