Antibiofilm Coatings Based on PLGA and Nanostructured Cefepime-Functionalized Magnetite

Author:

Ficai Denisa,Grumezescu Valentina,Fufă Oana,Popescu Roxana,Holban Alina,Ficai Anton,Grumezescu Alexandru,Mogoanta Laurentiu,Mogosanu George,Andronescu Ecaterina

Abstract

The aim of our study was to obtain and evaluate the properties of polymeric coatings based on poly(lactic-co-glycolic) acid (PLGA) embedded with magnetite nanoparticles functionalized with commercial antimicrobial drugs. In this respect, we firstly synthesized the iron oxide particles functionalized (@) with the antibiotic Cefepime (Fe3O4@CEF). In terms of composition and microstructure, the as-obtained powdery sample was investigated by means of grazing incidence X-ray diffraction (GIXRD), thermogravimetric analysis (TGA), scanning and transmission electron microscopy (SEM and TEM, respectively). Crystalline and nanosized particles (~5 nm mean particle size) with spherical morphology, consisting in magnetite core and coated with a uniform and reduced amount of antibiotic shell, were thus obtained. In vivo biodistribution studies revealed the obtained nanoparticles have a very low affinity for innate immune-related vital organs. Composite uniform and thin coatings based on poly(lactide-co-glycolide) (PLGA) and antibiotic-functionalized magnetite nanoparticles (PLGA/Fe3O4@CEF) were subsequently obtained by using the matrix assisted pulsed laser evaporation (MAPLE) technique. Relevant compositional and structural features regarding the composite coatings were obtained by performing infrared microscopy (IRM) and SEM investigations. The efficiency of the biocompatible composite coatings against biofilm development was assessed for both Gram-negative and Gram-positive pathogens. The PLGA/Fe3O4@CEF materials proved significant and sustained anti-biofilm activity against staphylococcal and Escherichia coli colonisation.

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

Cited by 24 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3