Abstract
As essential structural components of ATP-dependent chromatin-remodeling complex, the nucleolus-localized actin-related proteins (ARPs) play critical roles in many biological processes. Among them, ARP4 is identified as an integral subunit of chromatin remodeling complex SWR1, which is conserved in yeast, humans and plants. It was shown that RNAi mediated knock-down of Arabidopsisthaliana ARP4 (AtARP4) could affect plant development, specifically, leading to early flowering. However, so far, little is known about how ARP4 functions in the SWR1 complex in plant. Here, we identified a loss-of-function mutant of AtARP4 with a single nucleotide change from glycine to arginine, which had significantly smaller leaf size. The results from the split luciferase complementation imaging (LCI) and yeast two hybrid (Y2H) assays confirmed its physical interaction with the scaffold and catalytic subunit of SWR1 complex, photoperiod-independent early flowering 1 (PIE1). Furthermore, mutation of AtARP4 caused altered transcription response of hundreds of genes, in which the number of up-regulated differentially expressed genes (DEGs) was much larger than those down-regulated. Although most DEGs in atarp4 are related to plant defense and response to hormones such as salicylic acid, overall, it has less overlapping with other swr1 mutants and the hta9 hta11 double-mutant. In conclusion, our results reveal that AtARP4 is important for plant growth and such an effect is likely attributed to its repression on gene expression, typically at defense-related loci, thus providing some evidence for the coordination of plant growth and defense, while the regulatory patterns and mechanisms are distinctive from other SWR1 complex components.
Subject
Genetics (clinical),Genetics
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献