Effects of mitoTALENs-Directed Double-Strand Breaks on Plant Mitochondrial Genomes

Author:

Arimura Shin-ichiORCID

Abstract

Mitochondrial genomes in flowering plants differ from those in animals and yeasts in several ways, including having large and variable sizes, circular, linear and branched structures, long repeat sequences that participate in homologous recombinations, and variable genes orders, even within a species. Understanding these differences has been hampered by a lack of genetic methods for transforming plant mitochondrial genomes. We recently succeeded in disrupting targeted genes in mitochondrial genomes by mitochondria-targeted transcription activator-like effector nucleases (mitoTALENs) in rice, rapeseed, and Arabidopsis. Double-strand breaks created by mitoTALENs were repaired not by non-homologous end-joining (NHEJ) but by homologous recombination (HR) between repeats near and far from the target sites, resulting in new genomic structures with large deletions and different configurations. On the other hand, in mammals, TALENs-induced DSBs cause small insertions or deletions in nuclear genomes and degradation of mitochondrial genomes. These results suggest that the mitochondrial and nuclear genomes of plants and mammals have distinct mechanisms for responding to naturally occurring DSBs. The different responses appear to be well suited to differences in size and copy numbers of each genome.

Funder

Takeda Science Foundation

Publisher

MDPI AG

Subject

Genetics(clinical),Genetics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3