Discovery and Characterization of a Novel Tomato mlo Mutant from an EMS Mutagenized Micro-Tom Population

Author:

Yan Zhe,Appiano Michela,van Tuinen Ageeth,Meijer-Dekens Fien,Schipper Danny,Gao Dongli,Huibers Robin,Visser Richard G. F.ORCID,Bai Yuling,Wolters Anne-Marie A.

Abstract

In tomato (Solanum lycopersicum), there are at least three SlMLO (Mildew resistance Locus O) genes acting as susceptibility genes for the powdery mildew disease caused by Oidium neolycopersici, namely SlMLO1, SlMLO5 and SlMLO8. Of the three homologs, the SlMLO1 gene plays a major role since a natural mutant allele called ol-2 can almost completely prevent fungal penetration by formation of papillae. The ol-2 allele contains a 19-bp deletion in the coding sequence of the SlMLO1 gene, resulting in a premature stop codon within the second cytoplasmic loop of the predicted protein. In this study, we have developed a new genetic resource (M200) in the tomato cv. Micro-Tom genetic background by means of ethyl methane sulfonate (EMS) mutagenesis. The mutant M200 containing a novel allele (the m200 allele) of the tomato SlMLO1 gene showed profound resistance against powdery mildew with no fungal sporulation. Compared to the coding sequence of the SlMLO1 gene, the m200 allele carries a point mutation at T65A. The SNP results in a premature stop codon L22* located in the first transmembrane domain of the complete SlMLO1 protein. The length of the predicted protein is 21 amino acids, while the SlMLO1 full-length protein is 513 amino acids. A high-resolution melting (HRM) marker was developed to distinguish the mutated m200 allele from the SlMLO1 allele in backcross populations. The mutant allele conferred recessive resistance that was associated with papillae formation at fungal penetration sites of plant epidermal cells. A comprehensive list of known mlo mutations found in natural and artificial mutants is presented, which serves as a particularly valuable resource for powdery mildew resistance breeding.

Publisher

MDPI AG

Subject

Genetics(clinical),Genetics

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3