Detection of Bubble Defects on Tire Surface Based on Line Laser and Machine Vision

Author:

Yang Hualin,Jiang Yuanzheng,Deng Fang,Mu Yusong,Zhong Yan,Jiao Dongmei

Abstract

In order to eliminate driving dangers caused by tire surface bubbles, the detection method of bubble defects on tire surfaces based on line lasers and machine vision is studied. Since it is difficult to recognize tire surfaces directly through images, line laser scanning is used to obtain tire images. The filtering method and morphology method are combined to preprocess these images. The gray centroid method is adopted to extract the center of the laser stripe, and then the algorithm to determine the positions of bubble defects on tire surfaces is proposed. According to the geometric characteristics of tire bubbles, the coordinates of starting points, ending points, and rough positions of vertices are determined. Then, the ordinates of the laser center with sub-pixel accuracy near bubble vertices are discretely magnified. The mask made of Gaussian function is convoluted with the magnified region, and the maximum value is obtained. Furthermore, the position of bubble vertices can be accurately extracted. The denoising effects of different methods for images are compared through experiments, and different positions of bubbles are detected. Experimental results show that the detection accuracy of this method is up to 93%, which is much higher than other methods. Experiments verify that the proposed method is effective for detecting tire surface bubbles.

Funder

Natural Science Foundation of Shangdong Province

Natural Science Foundation of China

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3