Abstract
Liquified natural gas (LNG) manipulator arms have been widely used in natural gas transportation. However, the automatic docking technology of LNG manipulator arms has not yet been realized. The first step of automatic docking is to identify and locate the target and estimate its pose. This work proposes a petroleum pipeline interface recognition and pose judgment method based on binocular stereo vision technology for the automatic docking of LNG manipulator arms. The proposed method has three main steps, including target detection, 3D information acquisition, and plane fitting. First, the target petroleum pipeline interface is segmented by using a color mask. Then, color space and Hu moment are used to obtain the pixel coordinates of the contour and center of the target petroleum pipeline interface. The semi-global block matching (SGBM) algorithm is used for stereo matching to obtain the depth information of an image. Finally, a plane fitting and center point estimation method based on a random sample consensus (RANSAC) algorithm is proposed. This work performs a measurement accuracy verification experiment to verify the accuracy of the proposed method. The experimental results show that the distance measurement error is not more than 1% and the angle measurement error is less than one degree. The measurement accuracy of the method meets the requirements of subsequent automatic docking, which proves the feasibility of the proposed method and provides data support for the subsequent automatic docking of manipulator arms.
Funder
Dinghai District School-site Cooperation Project
Subject
Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献