Petroleum Pipeline Interface Recognition and Pose Detection Based on Binocular Stereo Vision

Author:

Feng WuweiORCID,Liang ZirongORCID,Mei Jie,Yang Shujie,Liang Bo,Zhong Xi,Xu Jie

Abstract

Liquified natural gas (LNG) manipulator arms have been widely used in natural gas transportation. However, the automatic docking technology of LNG manipulator arms has not yet been realized. The first step of automatic docking is to identify and locate the target and estimate its pose. This work proposes a petroleum pipeline interface recognition and pose judgment method based on binocular stereo vision technology for the automatic docking of LNG manipulator arms. The proposed method has three main steps, including target detection, 3D information acquisition, and plane fitting. First, the target petroleum pipeline interface is segmented by using a color mask. Then, color space and Hu moment are used to obtain the pixel coordinates of the contour and center of the target petroleum pipeline interface. The semi-global block matching (SGBM) algorithm is used for stereo matching to obtain the depth information of an image. Finally, a plane fitting and center point estimation method based on a random sample consensus (RANSAC) algorithm is proposed. This work performs a measurement accuracy verification experiment to verify the accuracy of the proposed method. The experimental results show that the distance measurement error is not more than 1% and the angle measurement error is less than one degree. The measurement accuracy of the method meets the requirements of subsequent automatic docking, which proves the feasibility of the proposed method and provides data support for the subsequent automatic docking of manipulator arms.

Funder

Dinghai District School-site Cooperation Project

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Implementation of Binocular Stereo Matching in Virtual Environment and its Application in Manipulator Grasping;2023 IEEE 6th International Conference on Electronic Information and Communication Technology (ICEICT);2023-07-21

2. Increased plane identification precision with stereo identification;Robotica;2023-06-19

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3