A Hybrid Degradation Evaluation Model for Aero-Engines

Author:

Ren Likun,Qin Haiqin,Cai Na,Li Bianjiang,Xie Zhenbo

Abstract

The non-convergence and low efficiency of the thermodynamic model make them difficult to be used in the aero-engines degradation evaluation, while the negligence of the thermodynamics process of data-driven degradation evaluation methods makes them inaccurate and hard to analyze the actual degradation of air path components. So, we propose a thermodynamic-based and data-driven hybrid model for aero-engine degradation evaluation. Different from thermodynamic-based methods, the iteration calculation is converted to the forward flow in the proposed neural network, thus improving convergence. Moreover, a multi-objective loss function considering the components co-operation process and fusion training process fully taking advantage of simulation and degradation trajectory datasets are proposed to improve the degradation evaluation accuracy. The test case is carried out on NASA’s benchmark for aero-engine degradation evaluation. The result shows that the proposed method can improve the accuracy significantly, which suggests its effectiveness.

Funder

Natural Science Foundation of Shandong Province

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3