Abstract
This paper presents a novel approach to the automated recognition and localization of 3-D objects. The proposed approach uses 3-D object segmentation to segment randomly stacked objects in an unstructured point cloud. Each segmented object is then represented by a regional area-based descriptor, which measures the distribution of surface area in the oriented bounding box (OBB) of the segmented object. By comparing the estimated descriptor with the template descriptors stored in the database, the object can be recognized. With this approach, the detected object can be matched with the model using the iterative closest point (ICP) algorithm to detect its 3-D location and orientation. Experiments were performed to verify the feasibility and effectiveness of the approach. With the measured point clouds having a spatial resolution of 1.05 mm, the proposed method can achieve both a mean deviation and standard deviation below half of the spatial resolution.
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献