Co3O4/Al-ZnO Nano-composites: Gas Sensing Properties

Author:

Fort Ada,Panzardi Enza,Vignoli Valerio,Hjiri Mokhtar,Aida Mohamed,Mugnaini Marco,Addabbo TommasoORCID

Abstract

In this paper, the gas sensing properties of metal oxide nano-powder composites are studied and modeled. The gas sensing properties of mixtures of two different metal oxide nanoparticles, prepared via low-cost routes, are investigated. The responses to both an oxidizing (NO2) and a reducing gas (CO) are analyzed. The tested composites are obtained by mixing a different percentage of a p-type metal oxide, Co3O4, with moderate responses to NO2 at about 200 °C and to CO at high temperature (above 260 °C), with n-type Al-doped ZnO, which is characterized by a large but unstable response towards NO2 around 160 °C and a moderate response towards CO around 200 °C. In the oxides mixtures, p-n heterojunctions are formed by the juxtaposition of an n-type and a p-type grain in contact. Consequently, the electronic conductivity is modified and the obtained composite materials show novel characteristics with respect to the base materials. This indicates that predicting the behavior of the composites from those of their components is not possible and it suggests that the hetero-junction behavior has to be studied to understand the sensing properties of the composite materials. The obtained results indicate that the composites containing a significant amount of hetero-junctions exhibit a stable response to NO2 at room temperature and significant responses towards CO at 160 °C.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference59 articles.

1. WO3 Nanograined Chemosensor: A Model of the Sensing Behavior

2. Nanocomposite Films for Gas Sensing https://www.intechopen.com/books/advances-in-nanocomposites-synthesis-characterization-and-industrial-applications/nanocomposite-films-for-gas-sensing/

3. Nanosized thin films of tungsten-titanium mixed oxides as gas sensors

4. Nanostructured mixed oxides compounds for gas sensing applications

5. Comparison of single and binary oxide MoO3, TiO2 and WO3 sol–gel gas sensors

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3