Off-Site Indoor Localization Competitions Based on Measured Data in a Warehouse

Author:

Ichikari RyosukeORCID,Kaji Katsuhiko,Shimomura Ryo,Kourogi Masakatsu,Okuma Takashi,Kurata Takeshi

Abstract

The performance of indoor localization methods is highly dependent on the situations in which they are used. Various competitions on indoor localization have been held for fairly comparing the existing indoor localization methods in shared and controlled testing environments. However, it is difficult to evaluate the practical performance in industrial scenarios through the existing competitions. This paper introduces two indoor localization competitions, which are named the “PDR Challenge in Warehouse Picking 2017” and “xDR Challenge for Warehouse Operations 2018” for tracking workers and vehicles in a warehouse scenario. For the PDR Challenge in Warehouse Picking 2017, we conducted a unique competition based on the data measured during the actual picking operation in an actual warehouse. We term the dead-reckoning of a vehicle as vehicle dead-reckoning (VDR), and the term “xDR” is derived from pedestrian dead-reckoning (PDR) plus VDR. As a sequel competition of the PDR Challenge in Warehouse Picking 2017, the xDR Challenge for Warehouse Operations 2018 was conducted as the world’s first competition that deals with tracking forklifts by VDR with smartphones. In the paper, first, we briefly summarize the existing competitions, and clarify the characteristics of our competitions by comparing them with other competitions. Our competitions have the unique capability of evaluating the practical performance in a warehouse by using the actual measured data as the test data and applying multi-faceted evaluation metrics. As a result, we successfully organize the competitions due to the many participants from many countries. As a conclusion of the paper, we summarize the findings of the competitions.

Funder

Japan Science and Technology Agency

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference27 articles.

1. IPIN Conference http://ipin-conference.org/

2. Ubicomp|ACM SIGCHI https://sigchi.org/conferences/conference-history/ubicomp/

3. The Smartphone-Based Offline Indoor Location Competition at IPIN 2016: Analysis and Future Work

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3