A Simplistic and Cost-Effective Design for Real-World Development of an Ambient Assisted Living System for Fall Detection and Indoor Localization: Proof-of-Concept

Author:

Thakur NirmalyaORCID,Han Chia Y.

Abstract

Falls, highly common in the constantly increasing global aging population, can have a variety of negative effects on their health, well-being, and quality of life, including restricting their capabilities to conduct activities of daily living (ADLs), which are crucial for one’s sustenance. Timely assistance during falls is highly necessary, which involves tracking the indoor location of the elderly during their diverse navigational patterns associated with different activities to detect the precise location of a fall. With the decreasing caregiver population on a global scale, it is important that the future of intelligent living environments can detect falls during ADLs while being able to track the indoor location of the elderly in the real world. Prior works in these fields have several limitations, such as the lack of functionalities to detect falls and indoor locations in a simultaneous manner, high cost of implementation, complicated design, the requirement of multiple hardware components for deployment, and the necessity to develop new hardware for implementation, which make the wide-scale deployment of such technologies challenging. To address these challenges, this work proposes a cost-effective and simplistic design paradigm for an ambient assisted living system that can capture multimodal components of user behaviors during ADLs that are necessary for performing fall detection and indoor localization in a simultaneous manner in the real-world. Proof-of-concept results from real-world experiments are presented to uphold the effective working of the system. The findings from two comparative studies with prior works in this field are also presented to uphold the novelty of this work. The first comparative study shows how the proposed system outperforms prior works in the areas of indoor localization and fall detection in terms of the effectiveness of its software design and hardware design. The second comparative study shows that the cost of the development of this system is the lowest as compared to prior works in these fields, which involved real-world development of the underlining systems, thereby upholding its cost-effective nature.

Publisher

MDPI AG

Subject

Information Systems

Reference111 articles.

1. Artificial intelligence in longevity medicine

2. Decade of Healthy Ageing (2021–2030)https://www.who.int/initiatives/decade-of-healthy-ageing

3. Ageing and Healthhttps://www.who.int/news-room/fact-sheets/detail/ageing-and-health

4. Transportation challenges for persons aging with mobility disability: Qualitative insights and policy implications

5. The Vision of the Healthcare Industry for Supporting the Aging Population;Wu,2022

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3