Affiliation:
1. School of Transportation, Southeast University, Nanjing 211189, China
2. Planning Research Center, Jiangsu Provincial Department of Transportation, Nanjing 210000, China
Abstract
Automated truck platooning has become an increasingly popular research subject, and its applicability to highways is considered one of the earliest possible landing scenarios for automated driving. However, there is a lack of research regarding the combination of truck platooning technology and truck lane management strategy on multilane highways in the environment of a cooperative vehicle–infrastructure system (CVIS). For highway weaving sections under the CVIS environment, this paper proposes a truck platooning optimal speed control model based on multi-objective optimization. Through a combination of model predictive control and the cell transmission model, this approach considers the bottleneck cell traffic flow, overall vehicle travel time, and truck platooning fuel consumption as objectives. By conducting experiments on a mixed traffic flow simulation platform, the multi-lane management strategies and optimal speed control effect were evaluated through different scenarios. This study also determined the appropriate proportion of truck platooning for an exclusive lane and to increase truck lanes, thus providing effective lane management decision support for highway managers.
Funder
Key R&D Program of Shandong Province, China
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献