Model-Based Deep Reinforcement Learning with Traffic Inference for Traffic Signal Control

Author:

Wang Hao1ORCID,Zhu Jinan1,Gu Bao1

Affiliation:

1. School of Computer Science and Information Engineering, Shanghai Institute of Technology, Shanghai 201418, China

Abstract

In the modern world, the extremely rapid growth of traffic demand has become a major problem for urban traffic development. Continuous optimization of signal control systems is an important way to relieve traffic pressure in cities. In recent years, with the impressive development of deep reinforcement learning (DRL), some DRL approaches have started to be applied to traffic signal control. Unlike traditional signal control methods, agents trained using DRL approaches continuously receive feedback from the environment to continuously improve the policy. Since current research in the field is more focused on the performance of the agent, data efficiency during training is ignored to some extent. However, in traffic signal control tasks, the cost of trial and error is very expensive. In this paper, we propose a DRL approach based on a traffic inference model. The proposed traffic inference model is based on the future information given based on upstream intersections and data from the environment to continuously learn the changing patterns of the traffic environment in order to make inferences about changes in the traffic environment. In the proposed algorithm, the inference model interacts with the agent instead of the environment. Through comprehensive experiments based on realistic datasets, we demonstrate that our proposed algorithm is superior to other algorithms in terms of its data efficiency and stronger performance.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference46 articles.

1. The SCOOT on-line traffic signal optimisation technique;Hunt;Traffic Eng. Control,1982

2. Two traffic-responsive area traffic control methods: SCAT and SCOOT;Luk;Traffic Eng. Control,1984

3. Distributed geometric fuzzy multiagent urban traffic signal control;Gokulan;IEEE Trans. Intell. Transp. Syst.,2010

4. Neural networks for real-time traffic signal control;Srinivasan;IEEE Trans. Intell. Transp. Syst.,2006

5. Sutton, R.S., and Barto, A.G. (2018). Reinforcement Learning: An Introduction, MIT Press.

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3