Ghost-ResNeXt: An Effective Deep Learning Based on Mature and Immature WBC Classification

Author:

Bairaboina Sai Sambasiva Rao1ORCID,Battula Srinivasa Rao1

Affiliation:

1. School of Computer Science and Engineering, VIT-AP University, Amaravati 522237, India

Abstract

White blood cells (WBCs) must be evaluated to determine how well the human immune system performs. Abnormal WBC counts may indicate malignancy, tuberculosis, severe anemia, cancer, and other serious diseases. To get an early diagnosis and to check if WBCs are abnormal or normal, one needs to examine the numbers and determine the shape of the WBCs. To address this problem, computer-aided procedures have been developed because hematologists perform this laborious, expensive, and time-consuming process manually. Resultantly, a powerful deep learning model was developed in the present study to categorize WBCs, including immature WBCs, from the images of peripheral blood smears. A network based on W-Net, a CNN-based method for WBC classification, was developed to execute the segmentation of leukocytes. Thereafter, significant feature maps were retrieved using a deep learning framework built on GhostNet. Then, they were categorized using a ResNeXt with a Wildebeest Herd Optimization (WHO)-based method. In addition, Deep Convolutional Generative Adversarial Network (DCGAN)-based data augmentation was implemented to handle the imbalanced data issue. To validate the model performance, the proposed technique was compared with the existing techniques and achieved 99.16%, 99.24%, and 98.61% accuracy levels for Leukocyte Images for Segmentation and Classification (LISC), Blood Cell Count and Detection (BCCD), and the single-cell morphological dataset, respectively. Thus, we can conclude that the proposed approach is valuable and adaptable for blood cell microscopic analysis in clinical settings.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3