Source Acquisition Device Identification from Recorded Audio Based on Spatiotemporal Representation Learning with Multi-Attention Mechanisms

Author:

Zeng Chunyan1ORCID,Feng Shixiong1,Zhu Dongliang2,Wang Zhifeng3ORCID

Affiliation:

1. Hubei Key Laboratory for High-Efficiency Utilization of Solar Energy and Operation Control of Energy Storage System, Hubei University of Technology, Wuhan 430068, China

2. National Engineering Research Center for Multimedia Software, School of Computer Science, Wuhan University, Wuhan 430072, China

3. Department of Digital Media Technology, Central China Normal University, Wuhan 430079, China

Abstract

Source acquisition device identification from recorded audio aims to identify the source recording device by analyzing the intrinsic characteristics of audio, which is a challenging problem in audio forensics. In this paper, we propose a spatiotemporal representation learning framework with multi-attention mechanisms to tackle this problem. In the deep feature extraction stage of recording devices, a two-branch network based on residual dense temporal convolution networks (RD-TCNs) and convolutional neural networks (CNNs) is constructed. The spatial probability distribution features of audio signals are employed as inputs to the branch of the CNN for spatial representation learning, and the temporal spectral features of audio signals are fed into the branch of the RD-TCN network for temporal representation learning. This achieves simultaneous learning of long-term and short-term features to obtain an accurate representation of device-related information. In the spatiotemporal feature fusion stage, three attention mechanisms—temporal, spatial, and branch attention mechanisms—are designed to capture spatiotemporal weights and achieve effective deep feature fusion. The proposed framework achieves state-of-the-art performance on the benchmark CCNU_Mobile dataset, reaching an accuracy of 97.6% for the identification of 45 recording devices, with a significant reduction in training time compared to other models.

Publisher

MDPI AG

Subject

General Physics and Astronomy

Reference37 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3