Shallow and deep feature fusion for digital audio tampering detection

Author:

Wang ZhifengORCID,Yang Yao,Zeng Chunyan,Kong Shuai,Feng Shixiong,Zhao Nan

Abstract

AbstractDigital audio tampering detection can be used to verify the authenticity of digital audio. However, most current methods use standard electronic network frequency (ENF) databases for visual comparison analysis of ENF continuity of digital audio or perform feature extraction for classification by machine learning methods. ENF databases are usually tricky to obtain, visual methods have weak feature representation, and machine learning methods have more information loss in features, resulting in low detection accuracy. This paper proposes a fusion method of shallow and deep features to fully use ENF information by exploiting the complementary nature of features at different levels to more accurately describe the changes in inconsistency produced by tampering operations to raw digital audio. Firstly, the audio signal is band-pass filtered to obtain the ENF component. Then, the discrete Fourier transform (DFT) and Hilbert transform are performed to obtain the phase and instantaneous frequency of the ENF component. Secondly, the mean value of the sequence variation is used as the shallow feature; the feature matrix obtained by framing and reshaping of the ENF sequence is used as the input of the convolutional neural network; the characteristics of the fitted coefficients are obtained by curve fitting. Then, the local details of ENF are obtained from the feature matrix by the convolutional neural network, and the global information of ENF is obtained by fitting coefficient features through deep neural network (DNN). The depth features of ENF are composed of ENF global information and local information together. The shallow and deep features are fused using an attention mechanism to give greater weights to features useful for classification and suppress invalid features. Finally, the tampered audio is detected by downscaling and fitting with a DNN containing two fully connected layers, and classification is performed using a Softmax layer. The method achieves 97.03% accuracy on three classic databases: Carioca 1, Carioca 2, and New Spanish. In addition, we have achieved an accuracy of 88.31% on the newly constructed database GAUDI-DI. Experimental results show that the proposed method is superior to the state-of-the-art method.

Funder

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3