Systematic Classification of Curvature and Feature Descriptor of 3D Shape and Its Application to “Complexity” Quantification Methods

Author:

Matsuyama Kazuma1,Shimizu Takahiro1,Kato Takeo2

Affiliation:

1. School of Integrated Design Engineering, Graduate School of Keio University, Yokohama 223-8522, Japan

2. Department of Mechanical Engineering, Keio University, Yokohama 223-8522, Japan

Abstract

Generative design is a system that automates part of the design process, but it cannot evaluate psychological issues related to shapes, such as “beauty” and “liking”. Designers therefore evaluate and choose the generated shapes based on their experience. Among the design features, “complexity” is considered to influence “aesthetic preference”. Although feature descriptors calculated from curvature can be used to quantify “complexity”, the selection guidelines for curvature and feature descriptors have not been adequately discussed. Therefore, this study aimed to conduct a systematic classification of curvature and a feature descriptor of 3D shapes and to apply the results to the “complexity” quantification. First, we surveyed the literature on curvature and feature descriptors and conducted a systematic classification. To quantify “complexity”, we used five curvatures (Gaussian curvature, mean curvature, Casorati curvature, shape index, and curvature index) and a feature descriptor (entropy of occurrence probability) obtained from the classification and compared them with the sensory evaluation values of “complexity”. The results showed that the determination coefficient between the quantified and sensory evaluation values of “complexity” was highest when the mean curvature was used. In addition, the Casorati curvature tended to show the highest signal-to-noise ratio (i.e., a high determination coefficient irrespective of the parameters set in the entropy calculation). These results will foster the development of generative design of 3D shapes using psychological evaluation.

Funder

Japan Society for the Promotion of Science Grant-in-Aid

Publisher

MDPI AG

Subject

General Physics and Astronomy

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3