Cratering Induced by Slow Highly Charged Ions on Ultrathin PMMA Films

Author:

Thomaz Raquel S.,Ernst Philipp,Grande Pedro L.ORCID,Schleberger MarikaORCID,Papaléo Ricardo M.ORCID

Abstract

Highly charged ions are a well-known tool for the nanostructuring of surfaces. We report on the thickness dependence of nanostructures produced by single 260 keV Xe38+ ions on ultrathin poly(methyl methacrylate) (PMMA) films (1 nm to 60 nm) deposited onto Si substrates. The nanostructures induced by slow highly charged ions are rimless craters with a diameter of around 15 nm, which are roughly independent of the thickness of the films down to layers of about 2 nm. The crater depth and thus the overall crater volume are, however, thickness-dependent, decreasing in size in films thinner than ~25 nm. Our findings indicate that although the potential energy of the highly charged ions is the predominant source of deposited energy, the depth of the excited material contributing to crater formation is much larger than the neutralization depth of the ions, which occurs in the first nanometer of the solid at the projectile velocity employed here. This suggests synergism between kinetic and potential-driven processes in nanostructure formation in PMMA.

Publisher

MDPI AG

Subject

Condensed Matter Physics,Nuclear and High Energy Physics,Atomic and Molecular Physics, and Optics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3