Atomic Processes, Including Photoabsorption, Subject to Outside Charge-Neutral Plasma

Author:

Chang Tu-Nan,Fang Te-Kuei,Wu Chensheng,Gao XiangORCID

Abstract

We present in this review our recent theoretical studies on atomic processes subject to the plasma environment including the α and β emissions and the ground state photoabsorption of the one- and two-electron atoms and ions. By carefully examining the spatial and temporal criteria of the Debye–Hückel (DH) approximation based on the classical Maxwell–Boltzmann statistics, we were able to represent the plasma effect with a Debye–Hückel screening potential VDH in terms of the Debye length D, which is linked to the ratio between the plasma density N and its temperature kT. Our theoretical data generated with VDH from the detailed non-relativistic and relativistic multiconfiguration atomic structure calculations compare well with the limited measured results from the most recent experiments. Starting from the quasi-hydrogenic picture, we were able to show qualitatively that the energy shifts of the emission lines could be expressed in terms of a general expression as a function of a modified parameter, i.e., the reduced Debye length λ. The close agreement between theory and experiment from our study may help to facilitate the plasma diagnostics to determine the electron density and the temperature of the outside plasma.

Funder

National Natural Science Foundation of China

Ministry of Science and Technology (MOST) in Taiwan

Publisher

MDPI AG

Subject

Condensed Matter Physics,Nuclear and High Energy Physics,Atomic and Molecular Physics, and Optics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3