Energy Shift of the Atomic Emission Lines of He-like Ions Subject to Outside Dense Plasma

Author:

Chang Tu-Nan1,Fang Te-Kuei2,Sun Rui34,Wu Chensheng5ORCID,Gao Xiang46

Affiliation:

1. Department of Physics, University of Southern California, Los Angeles, CA 90089-0484, USA

2. Department of Physics, Fu Jen Catholic University, Taipei 242, Taiwan

3. School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China

4. Institute of Applied Physics and Computational Mathematics, Beijing 100088, China

5. Faculty of Science, Kunming University of Science and Technology, Kunming 650500, China

6. National Key Laboratory of Computational Physics, Beijing 100088, China

Abstract

We present an extension of our study of the energy shift of the atomic emissions subject to charged-neutral outside dense plasma following the good agreement between the experimental measurements and our recent theoretical estimates for the α and β emission lines of a number of H-like and He-like ions. In particular, we are able to further demonstrate that the plasma-induced transition energy shift could indeed be interpolated by the simple quasi-hydrogenic picture based on the application of the Debye–Hückel (DH) approximation for the n=3 to n=2 transitions of the He-like ions. Our theoretically estimated redshifts of those emissions may offer the impetus for additional experimental measurement to facilitate the diagnostic efforts in the determination of the temperature and density of the dense plasma.

Funder

National Natural Science Foundation of China

Ministry of Science and Technology (MOST) in Taiwan

Publisher

MDPI AG

Subject

Condensed Matter Physics,Nuclear and High Energy Physics,Atomic and Molecular Physics, and Optics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3