Selective Growth and Contact Gap-Fill of Low Resistivity Si via Microwave Plasma-Enhanced CVD

Author:

Kim Youngwan,Lee Myoungwoo,Kim Youn-Jea

Abstract

Low resistivity polycrystalline Si could be selectively grown in the deep (~200 nm) and narrow patterns (~20 nm) of 20 nm pitch design rule DRAM (Dynamic Random Access Memory) by microwave plasma-enhanced chemical vapor deposition (MW-CVD). We were able to achieve the high phosphorus (CVD gap-fill in a large electrical contact area which does is affected by line pitch size) doping concentration (>2.5 × 1021 cm−3) and, thus, a low resistivity by adjusting source gas (SiH4, H2, PH3) decomposition through MW-CVD with a showerhead controlling the decomposition of source gases by using two different gas injection paths. In this study, a selective growth mechanism was applied by using the deposition/etch cyclic process to achieve the bottom–up process in the L-shaped contact, using H2 plasma that simultaneously promoted the deposition and the etch processes. Additionally, the cyclic selective growth technique was set up by controlling the SiH4 flow rate. The bottom-up process resulted in a uniform doping distribution, as well as an excellent filling capacity without seam and center void formation. Thus, low contact resistivity and higher transistor on-current could be achieved at a high and uniform phosphorus (P)-concentration. Compared to the conventional thermal, this method is expected to be a strong candidate for the complicated deep and narrow contact process.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Control and Systems Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3