Author:
Xiao Bing,Jia Xuexiu,Yang Dong,Sun Lingwen,Shi Feng,Wang Qitong,Jia Yongfei
Abstract
With the development of human society, the urban population and the urban building stock have been continuously increasing. Environmental issues such as greenhouse gases emissions, air pollution, and construction waste have gradually emerged. Due to the lack of an urban functional area database, it is very time-consuming to manually identify building functional areas. As a result, most of the current research on urban building functions are estimated at a large regional scale or only detailed calculations of individual buildings. The building functions classification method needs to be further improved. Based on the traditional methods, this paper proposes a building function classification method with higher recognition accuracy and is less time-consuming. The method is then applied to a certain area of Chaoyang District, Beijing, for validation and verification. The results show that the urban building function classification method in this paper has a recognition rate of 96.18%, an overall classification accuracy of 94.37%, and a kappa coefficient of 0.9089. The classification results are in good agreement with the virtual interpretation. In addition, automatic classification of building functions is implemented using ArcPy in ArcGIS, which significantly improves the classification efficiency.
Funder
The National Natural Science Foundation of China
Sustainable Process Integration Laboratory - SPIL
Subject
Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献