Association Rule Mining Meets Regression Analysis: An Automated Approach to Unveil Systematic Biases in Decision-Making Processes

Author:

Genga LauraORCID,Allodi LucaORCID,Zannone NicolaORCID

Abstract

Decisional processes are at the basis of most businesses in several application domains. However, they are often not fully transparent and can be affected by human or algorithmic biases that may lead to systematically incorrect or unfair outcomes. In this work, we propose an approach for unveiling biases in decisional processes, which leverages association rule mining for systematic hypothesis generation and regression analysis for model selection and recommendation extraction. In particular, we use rule mining to elicit candidate hypotheses of bias from the observational data of the process. From these hypotheses, we build regression models to determine the impact of variables on the process outcome. We show how the coefficient of the (selected) model can be used to extract recommendation, upon which the decision maker can operate. We evaluated our approach using both synthetic and real-life datasets in the context of discrimination discovery. The results show that our approach provides more reliable evidence compared to the one obtained using rule mining alone, and how the obtained recommendations can be used to guide analysts in the investigation of biases affecting the decisional process at hand.

Publisher

MDPI AG

Subject

General Medicine

Reference52 articles.

1. Turning contradictions into innovations or: How we learned to stop whining and improve security operations;Sundaramurthy,2016

2. A human capital model for mitigating security analyst burnout;Sundaramurthy,2015

3. An Organizational Psychology Perspective to Examining Computer Security Incident Response Teams

4. Data mining for discrimination discovery

5. Judgment under Uncertainty: Heuristics and Biases

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3