Affiliation:
1. Università di Pisa, Pisa, Italy
Abstract
In the context of civil rights law, discrimination refers to unfair or unequal treatment of people based on membership to a category or a minority, without regard to individual merit. Discrimination in credit, mortgage, insurance, labor market, and education has been investigated by researchers in economics and human sciences. With the advent of automatic decision support systems, such as credit scoring systems, the ease of data collection opens several challenges to data analysts for the fight against discrimination. In this article, we introduce the problem of discovering discrimination through data mining in a dataset of historical decision records, taken by humans or by automatic systems. We formalize the processes of direct and indirect discrimination discovery by modelling protected-by-law groups and contexts where discrimination occurs in a classification rule based syntax. Basically, classification rules extracted from the dataset allow for unveiling contexts of unlawful discrimination, where the degree of burden over protected-by-law groups is formalized by an extension of the lift measure of a classification rule. In direct discrimination, the extracted rules can be directly mined in search of discriminatory contexts. In indirect discrimination, the mining process needs some background knowledge as a further input, for example, census data, that combined with the extracted rules might allow for unveiling contexts of discriminatory decisions. A strategy adopted for combining extracted classification rules with background knowledge is called an inference model. In this article, we propose two inference models and provide automatic procedures for their implementation. An empirical assessment of our results is provided on the German credit dataset and on the PKDD Discovery Challenge 1999 financial dataset.
Publisher
Association for Computing Machinery (ACM)
Reference50 articles.
1. Privacy-preserving data mining
2. Australian Legislation. 2009. (a) Equal Opportunity Act—Victoria State (b) Anti-Discrimination Act—Queensland State. http://www.austlii.edu.au. Australian Legislation. 2009. (a) Equal Opportunity Act—Victoria State (b) Anti-Discrimination Act—Queensland State. http://www.austlii.edu.au.
3. Benchmarking state-of-the-art classification algorithms for credit scoring
4. Becker G. S. 1957. The Economics of Discrimination. University of Chicago Press. Becker G. S. 1957. The Economics of Discrimination. University of Chicago Press.
Cited by
87 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献