Interpretability Gone Bad: The Role of Bounded Rationality in How Practitioners Understand Machine Learning

Author:

Kaur Harmanpreet1ORCID,Conrad Matthew R.2ORCID,Rule Davis2ORCID,Lampe Cliff2ORCID,Gilbert Eric2ORCID

Affiliation:

1. University of Minnesota, Minneapolis, MN, USA

2. University of Michigan, Ann Arbor, MI, USA

Abstract

While interpretability tools are intended to help people better understand machine learning (ML), we find that they can, in fact, impair understanding. This paper presents a pre-registered, controlled experiment showing that ML practitioners (N=119) spent 5x less time on task, and were 17% less accurate about the data and model, when given access to interpretability tools. We present bounded rationality as the theoretical reason behind these findings. Bounded rationality presumes human departures from perfect rationality, and it is often effectuated by satisficing, i.e., an inclination towards "good enough" understanding. Adding interactive elements---a strategy often employed to promote deliberative thinking and engagement, and tested in our experiment---also does not help. We discuss implications for interpretability designers and researchers related to how cognitive and contextual factors can affect the effectiveness of interpretability tool use.

Funder

Google

Publisher

Association for Computing Machinery (ACM)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3