Functionality-Preserving Adversarial Machine Learning for Robust Classification in Cybersecurity and Intrusion Detection Domains: A Survey

Author:

McCarthy AndrewORCID,Ghadafi EssamORCID,Andriotis PanagiotisORCID,Legg PhilORCID

Abstract

Machine learning has become widely adopted as a strategy for dealing with a variety of cybersecurity issues, ranging from insider threat detection to intrusion and malware detection. However, by their very nature, machine learning systems can introduce vulnerabilities to a security defence whereby a learnt model is unaware of so-called adversarial examples that may intentionally result in mis-classification and therefore bypass a system. Adversarial machine learning has been a research topic for over a decade and is now an accepted but open problem. Much of the early research on adversarial examples has addressed issues related to computer vision, yet as machine learning continues to be adopted in other domains, then likewise it is important to assess the potential vulnerabilities that may occur. A key part of transferring to new domains relates to functionality-preservation, such that any crafted attack can still execute the original intended functionality when inspected by a human and/or a machine. In this literature survey, our main objective is to address the domain of adversarial machine learning attacks and examine the robustness of machine learning models in the cybersecurity and intrusion detection domains. We identify the key trends in current work observed in the literature, and explore how these relate to the research challenges that remain open for future works. Inclusion criteria were: articles related to functionality-preservation in adversarial machine learning for cybersecurity or intrusion detection with insight into robust classification. Generally, we excluded works that are not yet peer-reviewed; however, we included some significant papers that make a clear contribution to the domain. There is a risk of subjective bias in the selection of non-peer reviewed articles; however, this was mitigated by co-author review. We selected the following databases with a sizeable computer science element to search and retrieve literature: IEEE Xplore, ACM Digital Library, ScienceDirect, Scopus, SpringerLink, and Google Scholar. The literature search was conducted up to January 2022. We have striven to ensure a comprehensive coverage of the domain to the best of our knowledge. We have performed systematic searches of the literature, noting our search terms and results, and following up on all materials that appear relevant and fit within the topic domains of this review. This research was funded by the Partnership PhD scheme at the University of the West of England in collaboration with Techmodal Ltd.

Publisher

MDPI AG

Subject

General Medicine

Reference150 articles.

1. Static and dynamic malware analysis using machine learning;Raghuraman,2020

2. Evasion Is Not Enough: A Case Study of Android Malware;Berger,2020

3. Universal Adversarial Perturbations of Malware;Hou,2020

4. Classification with LSTM Networks in User Behaviour Analytics with Unbalanced Environment

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3