Artificial Intelligence to Improve Antibiotic Prescribing: A Systematic Review

Author:

Amin Doaa1ORCID,Garzόn-Orjuela Nathaly1ORCID,Garcia Pereira Agustin2,Parveen Sana1ORCID,Vornhagen Heike2ORCID,Vellinga Akke1ORCID

Affiliation:

1. School of Public Health, Physiotherapy & Sports Science, University College Dublin, Belfield, Dublin 4, Dublin, Ireland

2. Insight Centre for Data Analytics, University of Galway, H91 AEX4 Galway, Ireland

Abstract

Introduction: The use of antibiotics leads to antibiotic resistance (ABR). Different methods have been used to predict and control ABR. In recent years, artificial intelligence (AI) has been explored to improve antibiotic (AB) prescribing, and thereby control and reduce ABR. This review explores whether the use of AI can improve antibiotic prescribing for human patients. Methods: Observational studies that use AI to improve antibiotic prescribing were retrieved for this review. There were no restrictions on the time, setting or language. References of the included studies were checked for additional eligible studies. Two independent authors screened the studies for inclusion and assessed the risk of bias of the included studies using the National Institute of Health (NIH) Quality Assessment Tool for observational cohort studies. Results: Out of 3692 records, fifteen studies were eligible for full-text screening. Five studies were included in this review, and a narrative synthesis was carried out to assess their findings. All of the studies used supervised machine learning (ML) models as a subfield of AI, such as logistic regression, random forest, gradient boosting decision trees, support vector machines and K-nearest neighbours. Each study showed a positive contribution of ML in improving antibiotic prescribing, either by reducing antibiotic prescriptions or predicting inappropriate prescriptions. However, none of the studies reported the engagement of AB prescribers in developing their ML models, nor their feedback on the user-friendliness and reliability of the models in different healthcare settings. Conclusion: The use of ML methods may improve antibiotic prescribing in both primary and secondary settings. None of the studies evaluated the implementation process of their models in clinical practices. Prospero Registration: (CRD42022329049).

Funder

Research Leader Awards (RL) 2020, Health Research Board, Ireland

Publisher

MDPI AG

Subject

Pharmacology (medical),Infectious Diseases,Microbiology (medical),General Pharmacology, Toxicology and Pharmaceutics,Biochemistry,Microbiology

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3