WLAN RSS-Based Fingerprinting for Indoor Localization: A Machine Learning Inspired Bag-of-Features Approach

Author:

Altaf Khattak Sohaib BinORCID,Fawad ORCID,Nasralla Moustafa M.ORCID,Esmail Maged AbdullahORCID,Mostafa Hala,Jia Min

Abstract

Location-based services have permeated Smart academic institutions, enhancing the quality of higher education. Position information of people and objects can predict different potential requirements and provide relevant services to meet those needs. Indoor positioning system (IPS) research has attained robust location-based services in complex indoor structures. Unforeseeable propagation loss in complex indoor environments results in poor localization accuracy of the system. Various IPSs have been developed based on fingerprinting to precisely locate an object even in the presence of indoor artifacts such as multipath and unpredictable radio propagation losses. However, such methods are deleteriously affected by the vulnerability of fingerprint matching frameworks. In this paper, we propose a novel machine learning framework consisting of Bag-of-Features and followed by a k-nearest neighbor classifier to categorize the final features into their respective geographical coordinate data. BoF calculates the vocabulary set using k-mean clustering, where the frequency of the vocabulary in the raw fingerprint data represents the robust final features that improve localization accuracy. Experimental results from simulation-based indoor scenarios and real-time experiments demonstrate that the proposed framework outperforms previously developed models.

Funder

Princess Nourah bint Abdulrahman University

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference52 articles.

1. An IoT Raspberry Pi-based parking management system for smart campus

2. Design of student management system based on smart campus and wearable devices;Li,2022

3. Dynamic Group Formation With Intelligent Tutor Collaborative Learning: A Novel Approach for Next Generation Collaboration

4. Futuristic Trends and Innovations for Examining the Performance of Course Learning Outcomes Using the Rasch Analytical Model

5. An enhanced intelligent attendance management system for smart campus;Rosy;Proceedings of the 6th International Conference on Computing Methodologies and Communication (ICCMC),2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3