Environmental causality calibration: Advancing WLAN RF fingerprinting for precise indoor localization

Author:

Fan YufengORCID,Sun HaotaiORCID

Abstract

In recent years, considerable and valuable research progress has been made in indoor positioning technologies based on WLAN Radio Frequency (RF) fingerprinting, identifying it as one of the most promising positioning technologies with substantial potential for wider adoption. However, indoor environmental factors significantly influence the propagation of wireless RF signals, resulting in a considerable decrease in positioning accuracy as the indoor environmental conditions vary. Thus, effectively mitigating the impact of indoor environmental factors on WLAN RF fingerprinting-based positioning systems has become a crucial research problem. Currently, there is a dearth of comprehensive research on the influence of indoor climatic factors, particularly the variations in relative humidity, on the propagation of WLAN RF signals within indoor spaces and its consequential impact on positioning accuracy. To address the aforementioned issues, this paper proposes an Adaptive expansion fingerprint database (AeFd) model based on a regression learning algorithm. The AeFd, through the design of a relationship model describing the interaction between fingerprint databases under varying relative humidity, allows the fingerprint database expanded by AeFd to dynamically adapt to the changes in indoor relative humidity. Our experiments show that using the AeFd model with the KNN algorithm, a 5% performance improvement was observed over 10 days and an 8% improvement over 10 months. According to experimental test results, the fingerprint database expansion model AeFd proposed in this paper can effectively expand the fingerprint database under different relative humidity levels, thereby significantly enhancing the positioning performance of the system and improving its stability.

Funder

National Key Research and Development Program

Publisher

Public Library of Science (PLoS)

Reference29 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3