An End-to-End Deep Learning Method for Voltage Sag Classification

Author:

Turović RadovanORCID,Dragan Dinu,Gojić Gorana,Petrović Veljko B.,Gajić Dušan B.ORCID,Stanisavljević Aleksandar M.,Katić Vladimir A.ORCID

Abstract

Power quality disturbances (PQD) have a negative impact on power quality-sensitive equipment, often resulting in great financial losses. To prevent these losses, besides detecting a PQD on time, it is important to classify it, so that appropriate recovery procedures are employed. The majority of research employs machine learning model PQD classifiers on manually extracted features from simulated or real-world signals. This paper presents an end-to-end approach that circumvents the manual feature extraction and uses signals generated from mathematical voltage sag type formulas. We developed a configurable voltage sag generator that was used to form training and validation datasets. Based on the synthetic three-phase voltage signals, we trained several end-to-end LSTM classifiers that classify voltage sags according to ABC classification. The best-performing model achieved an accuracy of over 90% in the real-world dataset.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3