Classification of Power Quality Disturbances via Deep Learning
Author:
Affiliation:
1. Center of Metrology, Jiangxi Electric Power Research Institute, State Grid Corporation of China, Nanchang, China
2. Department of Electronic Information Engineering, Nanchang University, Nanchang, China
Funder
Creative Fund for Graduate Students in Jiangxi Province, China
Publisher
Informa UK Limited
Subject
Electrical and Electronic Engineering
Link
https://www.tandfonline.com/doi/pdf/10.1080/02564602.2016.1196620
Reference24 articles.
1. Optimal Feature Selection for Power-Quality Disturbances Classification
2. Wavelet-based feature extraction and selection for classification of power system disturbances using support vector machines
3. A new algorithm for automatic classification of power quality events based on wavelet transform and SVM
4. An expert system based on S-transform and neural network for automatic classification of power quality disturbances
5. Detection and Classification of Power Quality Disturbances Using S-Transform and Probabilistic Neural Network
Cited by 59 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. A comprehensive survey on load forecasting hybrid models: Navigating the Futuristic demand response patterns through experts and intelligent systems;Results in Engineering;2024-09
2. Development of a real-time fault detection method for electric power system via transformer-based deep learning model;International Journal of Electrical Power & Energy Systems;2024-08
3. UP-SDCG: A Method of Sensitive Data Classification for Collaborative Edge Computing in Financial Cloud Environment;Future Internet;2024-03-18
4. Estimation of an Extent of Sinusoidal Voltage Waveform Distortion Using Parametric and Nonparametric Multiple-Hypothesis Sequential Testing in Devices for Automatic Control of Power Quality Indices;Energies;2024-02-24
5. APPLICATION OF FRACTIONAL-ORDER INTEGRAL TRANSFORMS IN THE DIAGNOSIS OF ELECTRICAL SYSTEM CONDITIONS;Fractals;2024-01
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3