APPLICATION OF FRACTIONAL-ORDER INTEGRAL TRANSFORMS IN THE DIAGNOSIS OF ELECTRICAL SYSTEM CONDITIONS

Author:

CORTÉS CAMPOS H. M.1ORCID,GÓMEZ-AGUILAR J. F.2ORCID,ZÚÑIGA-AGUILAR C. J.3,AVALOS-RUIZ L. F.1ORCID,LAVÍN-DELGADO J. E.4ORCID

Affiliation:

1. Centro Nacional de Investigación y Desarrollo Tecnológico (CENIDET), Tecnológico Nacional de México, Interior Internado Palmira S/N, Col. Palmira, C. P. 62490, Cuernavaca, MR, Mexico

2. Consejo Nacional de Humanidades, Ciencias y Tecnologías (CONAHCyT), Centro Nacional de Investigación y Desarrollo Tecnológico (CENIDET), Tecnológico Nacional de México, Interior Internado Palmira S/N, Col. Palmira, C. P. 62490, Cuernavaca, MR, Mexico

3. Panzura Data Services, Blvr. Puerta de Hierro 5153, Puerta de Hierro, 45116 Zapopan, JA, Mexico

4. Dirección de Ingeniería en Redes y Telecomunicaciones, Universidad Politécnica del Estado de Guerrero (UPEG), Puente Campuzano, Carretera Federal Iguala-Taxco K. M. 105, Taxco de Alarcón, C. P. 40321, GE, Mexico

Abstract

This paper proposes a methodology for the diagnosis of electrical system conditions using fractional-order integral transforms for feature extraction. This work proposes three feature extraction algorithms using the Fractional Fourier Transform (FRFT), the Fourier Transform combined with the Mittag-Leffler function, and the Wavelet Transform (WT). Each algorithm extracts data from an electrical system to obtain a set of features that are classified by an Artificial Neural Network to determine the system’s condition. The algorithms are utilized in diagnosing two types of electrical machine faults, one in a photovoltaic system, and another in classifying the power quality disturbances (PQDs). An optimization algorithm is suggested to find the optimal orders of integral transforms. The obtained results demonstrate the system’s effective diagnosis, displaying superior performance in classifying the faults and PQDs with complex signals.

Publisher

World Scientific Pub Co Pte Ltd

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3