Abstract
The use of a cobalt-iron (VaCoFe) core is investigated as an alternative to silicon-iron (FeSi) in the design of interior permanent magnet synchronous motors (IPMSM). Considering VaCoFe and FeSi cores, a spoke-type IPMSM geometry is optimized for a torque range up to 40 N·m, providing a general comparative analysis between materials. This is done considering the application of a four-motor competition vehicle’s powertrain. A genetic optimization algorithm is coupled to the motor’s electromagnetic and thermal hybrid analytical/finite-element model to provide sufficiently accurate results within a feasible time. VaCoFe allows an estimated increase of up to 64% in torque for the same efficiency level, or up to 5% in efficiency for the same torque. After optimization and using a detailed time-dependent model, a potential 3.2% increase in efficiency, a core weight reduction of 4.1%, and a decrease of 9.6% in the motor’s core volume were found for the VaCoFe at 20 N·m. In addition, for the same motor volume, the VaCoFe allows an increase of 51.9% in torque with an increase of 1.1% in efficiency when compared with FeSi.
Funder
Fundação para a Ciência e Tecnologia
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献