Affiliation:
1. Engineering Research Center of Wideband Wireless Communication Technology, Ministry of Education, Nanjing University of Posts and Telecommunications, Nanjing 210003, China
2. State Key Laboratory of Air Traffic Management System, Nanjing 210014, China
Abstract
Accurate and timely forecasting of traffic on local road networks is crucial for deploying effective dynamic traffic control, advanced route planning, and navigation services. This task is particularly challenging due to complex spatio-temporal dependencies arising from non-Euclidean spatial relations in road networks and non-linear temporal dynamics influenced by changing road conditions. This paper introduces the spatio-temporal network embedding (STNE) model, a novel deep learning framework tailored for learning and forecasting graph-structured traffic data over extended input sequences. Unlike traditional convolutional neural networks (CNNs), the model employs graph convolutional networks (GCNs) to capture the spatial characteristics of local road network topologies. Moreover, the segmentation of very long input traffic data into multiple sub-sequences, based on significant temporal properties such as closeness, periodicity, and trend, is performed. Multi-dimensional long short-term memory neural networks (MDLSTM) are utilized to flexibly access multi-dimensional context. Experimental results demonstrate that the STNE model surpasses state-of-the-art traffic forecasting benchmarks on two large-scale real-world traffic datasets.
Funder
State Key Laboratory of Air Traffic Management System, China