Real-Time Short-Term Traffic Speed Level Forecasting and Uncertainty Quantification Using Layered Kalman Filters

Author:

Guo Jianhua1,Williams Billy M.2

Affiliation:

1. Federal Highway Administration, 6300 Georgetown Pike, McLean, VA 22101.

2. Department of Civil, Construction, and Environmental Engineering, North Carolina State University, Campus Box 7908, Raleigh, NC 27695.

Abstract

Short-term traffic condition forecasting has long been argued as essential for developing proactive traffic control systems that could alleviate the growing congestion in the United States. In this field, short-term traffic condition level forecasting and short-term traffic condition uncertainty forecasting play an equally important role. Past literature showed that linear stochastic time series models are promising in modeling and hence forecasting traffic condition levels and traffic conditional variance with workable performance. On the basis of this finding, an autoregressive moving average plus generalized autoregressive conditional heteroscedasticity structure was proposed for modeling the station-by-station traffic speed series. An online algorithm based on layered Kalman filter was developed for processing this structure in real time. Empirical results based on real-world station-by-station traffic speed data showed that the proposed online algorithm can generate workable short-term traffic speed level forecasts and associated prediction confidence intervals. Future work is recommended to develop and test a proactive traffic control system in a simulated environment, to refine the uncertainty modeling through a stochastic volatility model, and to extend uncertainty modeling and forecasting to link level and network level.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Civil and Structural Engineering

Cited by 78 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3