Abstract
In several application domains, electronic nose systems employing conventional data processing approaches incur substantial power and computational costs and limitations, such as significant latency and poor accuracy for classification. Recent developments in spike-based bio-inspired approaches have delivered solutions for the highly accurate classification of multivariate sensor data with minimized computational and power requirements. Although these methods have addressed issues related to efficient data processing and classification accuracy, other areas, such as reducing the processing latency to support real-time application and deploying spike-based solutions on supported hardware, have yet to be studied in detail. Through this investigation, we proposed a spiking neural network (SNN)-based classifier, implemented in a chip-emulation-based development environment, that can be seamlessly deployed on a neuromorphic system-on-a-chip (NSoC). Under three different scenarios of increasing complexity, the SNN was determined to be able to classify real-valued sensor data with greater than 90% accuracy and with a maximum latency of 3 s on the software-based platform. Highlights of this work included the design and implementation of a novel encoder for artificial olfactory systems, implementation of unsupervised spike-timing-dependent plasticity (STDP) for learning, and a foundational study on early classification capability using the SNN-based classifier.
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Cited by
26 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献